Product details

Setpoint type Factory Programmed Setpoint value (°C) 130, 135 Operating temperature range (°C) -40 to 150 Accuracy over temp range (max) (°C) 2.3 Sensor gain (mV/°C) -12.8 Output type Open drain, Push Pull Supply voltage (min) (V) 1.6 Supply voltage (max) (V) 5.5 Supply current (typ) (µA) 8 Number of comparator channels 1 Features Built-in hysteresis, Trip-Test Pin Rating Automotive Interface type Analog output, Switch TI functional safety category Functional Safety-Capable
Setpoint type Factory Programmed Setpoint value (°C) 130, 135 Operating temperature range (°C) -40 to 150 Accuracy over temp range (max) (°C) 2.3 Sensor gain (mV/°C) -12.8 Output type Open drain, Push Pull Supply voltage (min) (V) 1.6 Supply voltage (max) (V) 5.5 Supply current (typ) (µA) 8 Number of comparator channels 1 Features Built-in hysteresis, Trip-Test Pin Rating Automotive Interface type Analog output, Switch TI functional safety category Functional Safety-Capable
WSON (NGF) 6 5.5 mm² 2.5 x 2.2
  • Low 1.6-V Operation
  • Low Quiescent Current
  • Latching Function: Device Can Latch the Over Temperature Condition
  • Push-Pull and Open-Drain Temperature Switch Outputs
  • Wide Trip Point Range of 0°C to 150°C
  • Very Linear Analog VTEMP Temperature Sensor Output
  • VTEMP Output Short-Circuit Protected
  • Accurate Over –50°C to 150°C Temperature Range
  • Excellent Power Supply Noise Rejection
  • LM26LVQISD-130 and LM26LVQISD-135 are AEC-Q100 Qualified and are Manufactured on an Automotive Grade Flow:
    • Device Temperature Grade 0: –40°C to 150°C Ambient Operating Temperature Range
    • Device HBM ESD Classification Level 3 A
    • Device CDM ESD Classification Level C6
    • Device MM ESD Classification Level M3
  • Low 1.6-V Operation
  • Low Quiescent Current
  • Latching Function: Device Can Latch the Over Temperature Condition
  • Push-Pull and Open-Drain Temperature Switch Outputs
  • Wide Trip Point Range of 0°C to 150°C
  • Very Linear Analog VTEMP Temperature Sensor Output
  • VTEMP Output Short-Circuit Protected
  • Accurate Over –50°C to 150°C Temperature Range
  • Excellent Power Supply Noise Rejection
  • LM26LVQISD-130 and LM26LVQISD-135 are AEC-Q100 Qualified and are Manufactured on an Automotive Grade Flow:
    • Device Temperature Grade 0: –40°C to 150°C Ambient Operating Temperature Range
    • Device HBM ESD Classification Level 3 A
    • Device CDM ESD Classification Level C6
    • Device MM ESD Classification Level M3

The LM26LV and LM26LV-Q1 are low-voltage, precision, dual-output, low-power temperature switches and temperature sensors. The temperature trip point (TTRIP) can be preset at the factory to any temperature in the range of 0°C to 150°C in 1°C increments. Built-in temperature hysteresis (THYST) keeps the output stable in an environment of temperature instability.

In normal operation the LM26LV or LM26LV-Q1 temperature switch outputs assert when the die temperature exceeds TTRIP. The temperature switch outputs will reset when the temperature falls below a temperature equal to (TTRIP – THYST). The OVERTEMP digital output, is active-high with a push-pull structure, while the OVERTEMP digital output, is active-low with an open-drain structure.

The analog output, VTEMP, delivers an analog output voltage with Negative Temperature Coefficient (NTC).

Driving the TRIP_TEST input high causes the digital outputs to be asserted for in-situ verification and causes the threshold voltage to appear at the VTEMP output pin, which could be used to verify the temperature trip point.

The LM26LV’s and LM26LV-Q1’s low minimum supply voltage makes them ideal for 1.8-V system designs. The wide operating range, low supply current, and excellent accuracy provide a temperature switch solution for a wide range of commercial and industrial applications.

The LM26LV and LM26LV-Q1 are low-voltage, precision, dual-output, low-power temperature switches and temperature sensors. The temperature trip point (TTRIP) can be preset at the factory to any temperature in the range of 0°C to 150°C in 1°C increments. Built-in temperature hysteresis (THYST) keeps the output stable in an environment of temperature instability.

In normal operation the LM26LV or LM26LV-Q1 temperature switch outputs assert when the die temperature exceeds TTRIP. The temperature switch outputs will reset when the temperature falls below a temperature equal to (TTRIP – THYST). The OVERTEMP digital output, is active-high with a push-pull structure, while the OVERTEMP digital output, is active-low with an open-drain structure.

The analog output, VTEMP, delivers an analog output voltage with Negative Temperature Coefficient (NTC).

Driving the TRIP_TEST input high causes the digital outputs to be asserted for in-situ verification and causes the threshold voltage to appear at the VTEMP output pin, which could be used to verify the temperature trip point.

The LM26LV’s and LM26LV-Q1’s low minimum supply voltage makes them ideal for 1.8-V system designs. The wide operating range, low supply current, and excellent accuracy provide a temperature switch solution for a wide range of commercial and industrial applications.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Similar functionality to the compared device
TMP390-Q1 ACTIVE Automotive grade, ultra-small, dual-channel, 0.5-μA, resistor-programmable temperature switch This product has a small package size (1.2mm x 1.6mm), lower IQ (1uA), and dual trip point outputs.

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 2
Type Title Date
* Data sheet LM26LV and LM26LV-Q1 1.6-V, WSON-6 Factory Preset Temperature Switch and Temperature Sensor datasheet (Rev. G) PDF | HTML 06 Sep 2016
EVM User's guide Using the LM26EVM 30 Nov 2015

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Package Pins CAD symbols, footprints & 3D models
WSON (NGF) 6 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos