LM324LV

ACTIVE

Quad, 5.5-V, 1-MHz, 3-mV offset voltage operational amplifier

Product details

Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 5.5 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 2.7 Rail-to-rail In to V- GBW (typ) (MHz) 1 Slew rate (typ) (V/µs) 1.5 Vos (offset voltage at 25°C) (max) (mV) 3 Iq per channel (typ) (mA) 0.09 Vn at 1 kHz (typ) (nV√Hz) 40 Rating Catalog Operating temperature range (°C) -40 to 125 TI functional safety category Functional Safety-Capable Offset drift (typ) (µV/°C) 4 Features Cost Optimized, EMI Hardened, Small Size, Standard Amps CMRR (typ) (dB) 92 Iout (typ) (A) 0.04 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.1 Input common mode headroom (to positive supply) (typ) (V) -1 Output swing headroom (to negative supply) (typ) (V) 0.04 Output swing headroom (to positive supply) (typ) (V) -1
Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 5.5 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 2.7 Rail-to-rail In to V- GBW (typ) (MHz) 1 Slew rate (typ) (V/µs) 1.5 Vos (offset voltage at 25°C) (max) (mV) 3 Iq per channel (typ) (mA) 0.09 Vn at 1 kHz (typ) (nV√Hz) 40 Rating Catalog Operating temperature range (°C) -40 to 125 TI functional safety category Functional Safety-Capable Offset drift (typ) (µV/°C) 4 Features Cost Optimized, EMI Hardened, Small Size, Standard Amps CMRR (typ) (dB) 92 Iout (typ) (A) 0.04 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.1 Input common mode headroom (to positive supply) (typ) (V) -1 Output swing headroom (to negative supply) (typ) (V) 0.04 Output swing headroom (to positive supply) (typ) (V) -1
SOIC (D) 14 51.9 mm² 8.65 x 6 SOT-23-THN (DYY) 14 13.692 mm² 4.2 x 3.26 TSSOP (PW) 14 32 mm² 5 x 6.4
  • Industry standard amplifier for cost-sensitive systems
  • Low input offset voltage: ±1 mV
  • Common-mode voltage range includes ground
  • Unity-gain bandwidth: 1 MHz
  • Low broadband noise: 40 nV/√Hz
  • Low quiescent current: 90 µA/Ch
  • Unity-gain stable
  • Operational at supply voltages from 2.7 V to 5.5 V
  • Offered in single, dual, and quad channel variants
  • Robust ESD specification: 2-kV HBM
  • Extended temperature range: –40°C to 125°C
  • Industry standard amplifier for cost-sensitive systems
  • Low input offset voltage: ±1 mV
  • Common-mode voltage range includes ground
  • Unity-gain bandwidth: 1 MHz
  • Low broadband noise: 40 nV/√Hz
  • Low quiescent current: 90 µA/Ch
  • Unity-gain stable
  • Operational at supply voltages from 2.7 V to 5.5 V
  • Offered in single, dual, and quad channel variants
  • Robust ESD specification: 2-kV HBM
  • Extended temperature range: –40°C to 125°C

The LM3xxLV family includes the single LM321LV, dual LM358LV, and quad LM324LV operational amplifiers, or op amps. The devices operate from a low voltage of 2.7 V to 5.5 V.

These op amps supply an alternative to the LM321, LM358, and LM324 in low-voltage applications that are sensitive to cost. Some applications are large appliances, smoke detectors, and personal electronics. The LM3xxLV devices supply better performance than the LM3xx devices at low voltage, and have lower power consumption. The op amps are stable at unity gain, and do not have reverse phase in overdrive conditions. The design for ESD gives the LM3xxLV family an HBM specification for a minimum of 2 kV.

The LM3xxLV family is available in packages that have industry standards. The packages include SOT-23, SOIC, VSSOP, and TSSOP packages.

The LM3xxLV family includes the single LM321LV, dual LM358LV, and quad LM324LV operational amplifiers, or op amps. The devices operate from a low voltage of 2.7 V to 5.5 V.

These op amps supply an alternative to the LM321, LM358, and LM324 in low-voltage applications that are sensitive to cost. Some applications are large appliances, smoke detectors, and personal electronics. The LM3xxLV devices supply better performance than the LM3xx devices at low voltage, and have lower power consumption. The op amps are stable at unity gain, and do not have reverse phase in overdrive conditions. The design for ESD gives the LM3xxLV family an HBM specification for a minimum of 2 kV.

The LM3xxLV family is available in packages that have industry standards. The packages include SOT-23, SOIC, VSSOP, and TSSOP packages.

Download View video with transcript Video

Check TI.com inventory for similar products

Products with similar specifications, sorted by available TI.com inventory.

View now

Similar products you might be interested in

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
TLV9004 ACTIVE Quad, 5.5-V, 1-MHz, RRIO operational amplifier for cost-optimized applications Wider supply range (1.8V to 5.5V), faster slew rate (2V/µs), lower offset (2.6mV), RRIO, lower power (0.06mA), lower noise (30nV/√Hz), lower bias current (10pA)
Pin-for-pin with same functionality to the compared device
LMV324A ACTIVE Quad, 5.5-V, 1-MHz, 4-mV offset voltage, RRO operational amplifier Faster slew rate (1.7 V/us), lower power (0.08 mA), lower noise (30 nV/√Hz)

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 2
Type Title Date
* Data sheet LM321LV, LM358LV, LM324LV Industry Standard, Low Voltage Operational Amplifiers datasheet (Rev. E) PDF | HTML 11 Feb 2022
Application note AN-31 Amplifier Circuit Collection (Rev. D) 21 Oct 2020

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

AMP-PDK-EVM — Amplifier performance development kit evaluation module

The amplifier performance development kit (PDK) is an evaluation module (EVM) kit to test common operational amplifier (op amp) parameters and is compatible with most op amps and comparators. The EVM kit offers a main board with several socketed daughtercard options to fit package needs, allowing (...)

User guide: PDF | HTML
Evaluation board

DYY-AMP-EVM — Evaluation module for operational amplifiers in the DYY package

The DYY-AMP-EVM is an evaluation module (EVM) to test the performance of the op amps available in DYY-14 (SOT-23 THN) packages. This EVM can easily be configured as an inverting amplifier, non-inverting amplifier and difference amplifier, which allows engineers to quickly evaluate and verify design (...)

User guide: PDF | HTML
Not available on TI.com
Simulation model

LM324LV PSpice Model (Rev. B)

SBOMAO5B.ZIP (22 KB) - PSpice Model
Simulation model

LM324LV TINA-TI Reference Design

SLOM453.ZIP (28 KB) - TINA-TI Reference Design
Simulation model

LM324LV TINA-TI Spice Model

SBOMAO4.ZIP (4 KB) - TINA-TI Spice Model
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Design tool

SBOC537 Simulation for AC Coupled Non-Inverting Amplifier in AN-31

Supported products & hardware

Supported products & hardware

Products
General-purpose op amps
LM324LV Quad, 5.5-V, 1-MHz, 3-mV offset voltage operational amplifier
Design tool

SBOC541 Simulation for Neutralizing Input Capacitance to Optimize Response Time in AN-31

Supported products & hardware

Supported products & hardware

Products
General-purpose op amps
LM324LV Quad, 5.5-V, 1-MHz, 3-mV offset voltage operational amplifier
Design tool

SBOC545 Simulation for Offset Voltage Adjustment for Voltage Followers in AN-31

Supported products & hardware

Supported products & hardware

Products
General-purpose op amps
LM324LV Quad, 5.5-V, 1-MHz, 3-mV offset voltage operational amplifier
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins CAD symbols, footprints & 3D models
SOIC (D) 14 Ultra Librarian
SOT-23-THN (DYY) 14 Ultra Librarian
TSSOP (PW) 14 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos