具有集成点对点串行通信或模拟前端 (AFE) 的高级处理器和片上系统 (SoC) 的电源需要具有低输出电压纹波,才能保持信号完整性并提高性能。处理器负载点 (POL) 电源的输出电压纹波要求可能低于 2mV,这大约是典型纹波设计的十分之一,这给同步降压转换器带来了严重的设计限制。由于处理器的输出电流要求超出了线性后置稳压器的能力,因此采用具有更高开关频率和额外输出电容的第二级滤波器可大大减少 POL 纹波。同步降压转换器具有多种不同的控制架构,每种架构都具有独特方法,可在低纹波电压设计下确保稳定性。本文比较了实现 1mV 输出电压纹波的三种不同控制架构:外部补偿电压模式、恒定导通时间和可选补偿电流模式,并提供了使用相同电气规格的测试数据以及输出电压纹波、解决方案尺寸、负载瞬态和效率的比较结果。
设计并构建了三种不同电源,以展示在类似工作条件下每种控制模式的性能。对于每种设计,输入电压为 12V,输出电压为 1V,并且每个器件的输出电流能够达到 15A。这些是为高性能 SoC 供电的典型要求,高性能 SoC 集成了敏感的模拟电路,需要低输出电压纹波。
为了约束滤波器设计和性能预期,允许的纹波电压为输出电压的 ±0.15% 或 ±1.5mV (3mVpp)。我们采用三个 TI 直流/直流转换器进行比较:15A D-CAP3™ 降压转换器 (TPS548A28)、20A 内部补偿高级电流模式 (ACM) 降压转换器 (TPS543B22) 和 15A 电压模式降压转换器 (TPS56121)。我们在转换器支持类似第二级滤波器元件的能力范围内,选择了尽可能彼此接近的输出电压、输出电流和工作频率。