SN74AVC2T245-Q1

ACTIVE

Product details

Bits (#) 2 Data rate (max) (Mbps) 500 Vout (min) (V) 1.2 Vout (max) (V) 3.6 Applications JTAG Features Output enable, Overvoltage tolerant inputs, Partial power down (Ioff) Technology family AVC Supply current (max) (mA) 0.016 Rating Automotive Operating temperature range (°C) -40 to 125
Bits (#) 2 Data rate (max) (Mbps) 500 Vout (min) (V) 1.2 Vout (max) (V) 3.6 Applications JTAG Features Output enable, Overvoltage tolerant inputs, Partial power down (Ioff) Technology family AVC Supply current (max) (mA) 0.016 Rating Automotive Operating temperature range (°C) -40 to 125
UQFN (RSW) 10 2.52 mm² 1.8 x 1.4
  • Each Channel Has Independent Direction Control
  • Control Inputs VIH/VIL Levels Are Referenced to VCCA Voltage
  • Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2V to 3.6V Power-Supply Range
  • I/Os Are 4.6V Tolerant
  • Ioff Supports Partial-Power-Down Mode Operation
  • VCC Isolation Feature - If Either VCC Input is at GND, Both Ports are in High-Impedance State
  • Typical Data Rates
    • 500Mbps (1.8V to 3.3V Level-Shifting)
    • 320Mbps (<1.8V to 3.3V Level-Shifting)
    • 320Mbps (Translate to 2.5V or 1.8V)
    • 280Mbps (Translate to 1.5V)
    • 240Mbps (Translate to 1.2V)
  • Latch-Up Performance Exceeds 100mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 5000V Human-Body Model (A114-A)
    • 200V Machine Model (A115-A)
    • 1500V Charged-Device Model (C101)
  • Each Channel Has Independent Direction Control
  • Control Inputs VIH/VIL Levels Are Referenced to VCCA Voltage
  • Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2V to 3.6V Power-Supply Range
  • I/Os Are 4.6V Tolerant
  • Ioff Supports Partial-Power-Down Mode Operation
  • VCC Isolation Feature - If Either VCC Input is at GND, Both Ports are in High-Impedance State
  • Typical Data Rates
    • 500Mbps (1.8V to 3.3V Level-Shifting)
    • 320Mbps (<1.8V to 3.3V Level-Shifting)
    • 320Mbps (Translate to 2.5V or 1.8V)
    • 280Mbps (Translate to 1.5V)
    • 240Mbps (Translate to 1.2V)
  • Latch-Up Performance Exceeds 100mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 5000V Human-Body Model (A114-A)
    • 200V Machine Model (A115-A)
    • 1500V Charged-Device Model (C101)

This dual-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.2V to 3.6V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.2V to 3.6V. This allows for universal low-voltage bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V voltage nodes.

The SN74AVC2T245-Q1 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input and the output-enable ( OE) activate either the B-port outputs or the A-port outputs or place both output ports into the high-impedance mode . The device transmits data from the A bus to the B bus when the B-port outputs are activated and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic HIGH or LOW level applied to prevent excess ICC and ICCZ.

The SN74AVC2T245-Q1 control pins (DIR1, DIR2, and OE) are supplied by VCCA.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The VCC isolation feature ensures that if either VCC input is at GND, both ports are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE must be connected to VCC through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This dual-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.2V to 3.6V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.2V to 3.6V. This allows for universal low-voltage bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V voltage nodes.

The SN74AVC2T245-Q1 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input and the output-enable ( OE) activate either the B-port outputs or the A-port outputs or place both output ports into the high-impedance mode . The device transmits data from the A bus to the B bus when the B-port outputs are activated and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic HIGH or LOW level applied to prevent excess ICC and ICCZ.

The SN74AVC2T245-Q1 control pins (DIR1, DIR2, and OE) are supplied by VCCA.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The VCC isolation feature ensures that if either VCC input is at GND, both ports are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE must be connected to VCC through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Download View video with transcript Video

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

5-8-NL-LOGIC-EVM — Generic logic and translation EVM supporting 5 to 8 pin DPW, DQE, DRY, DSF, DTM, DTQ and DTT pkgs

Generic EVM designed to support any logic or translation device that has a DTT, DRY, DPW, DTM, DQE, DQM, DSF, or DTQ package. Board design allows for flexible evaluation.

User guide: PDF | HTML
Not available on TI.com
Package Pins CAD symbols, footprints & 3D models
UQFN (RSW) 10 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos