The SN74CB3T16210 is a high-speed TTL-compatible FET bus switch with low ON-state
resistance (ron), allowing for minimal propagation delay. The device fully
supports mixed-mode signal operation on all data I/O ports by providing voltage translation that
tracks VCC. The SN74CB3T16210 supports systems using 5-V TTL, 3.3-V LVTTL,
and 2.5-V CMOS switching standards, as well as user-defined switching levels (see ).
The SN74CB3T16210 is organized as two 10-bit bus switches with separate ouput-enable
(1OE, 2OE) inputs. It can be used as two 10-bit bus
switches or as one 20-bit bus switch. When OE is low, the associated 10-bit bus switch is ON, and the A port is connected to the B port, allowing bidirectional data flow between ports. When OE is high, the associated 10-bit bus switch is OFF, and a high-impedance state exists between the A and B ports.
This device is fully specified for partial-power-down applications using
Ioff. The Ioff feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.
To ensure the high-impedance state during power up or power down,
OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the
driver.
The SN74CB3T16210 is a high-speed TTL-compatible FET bus switch with low ON-state
resistance (ron), allowing for minimal propagation delay. The device fully
supports mixed-mode signal operation on all data I/O ports by providing voltage translation that
tracks VCC. The SN74CB3T16210 supports systems using 5-V TTL, 3.3-V LVTTL,
and 2.5-V CMOS switching standards, as well as user-defined switching levels (see ).
The SN74CB3T16210 is organized as two 10-bit bus switches with separate ouput-enable
(1OE, 2OE) inputs. It can be used as two 10-bit bus
switches or as one 20-bit bus switch. When OE is low, the associated 10-bit bus switch is ON, and the A port is connected to the B port, allowing bidirectional data flow between ports. When OE is high, the associated 10-bit bus switch is OFF, and a high-impedance state exists between the A and B ports.
This device is fully specified for partial-power-down applications using
Ioff. The Ioff feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.
To ensure the high-impedance state during power up or power down,
OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the
driver.