Product details

Technology family GTL Applications MDIO, PMBus, SDIO, SMBus Rating Catalog Operating temperature range (°C) -40 to 85
Technology family GTL Applications MDIO, PMBus, SDIO, SMBus Rating Catalog Operating temperature range (°C) -40 to 85
TSSOP (PW) 24 49.92 mm² 7.8 x 6.4
  • Provides Bidirectional Voltage Translation With No Direction Control Required
  • Allows Voltage Level Translation From 1 V up to 5 V
  • Provides Direct Interface With GTL, GTL+, LVTTL/TTL, and 5-V CMOS Levels
  • Low On-State Resistance Between Input and Output Pins (Sn/Dn)
  • Supports Hot Insertion
  • No Power Supply Required — Will Not Latch Up
  • 5-V-Tolerant Inputs
  • Low Standby Current
  • Flow-Through Pinout for Ease of Printed Circuit Board Trace Routing
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-4)
    • 1000-V Charged-Device Model (C101)
  • APPLICATIONS
    • Bidirectional or Unidirectional Applications Requiring Voltage-Level Translation From Any Voltage (1 V to 5 V) to Any Voltage (1 V to 5 V)
    • Low Voltage Processor I2C Port Translation to 3.3-V and/or 5-V I2C Bus Signal Levels
    • GTL/GTL+ Translation to LVTTL/TTL Signal Levels

  • Provides Bidirectional Voltage Translation With No Direction Control Required
  • Allows Voltage Level Translation From 1 V up to 5 V
  • Provides Direct Interface With GTL, GTL+, LVTTL/TTL, and 5-V CMOS Levels
  • Low On-State Resistance Between Input and Output Pins (Sn/Dn)
  • Supports Hot Insertion
  • No Power Supply Required — Will Not Latch Up
  • 5-V-Tolerant Inputs
  • Low Standby Current
  • Flow-Through Pinout for Ease of Printed Circuit Board Trace Routing
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-4)
    • 1000-V Charged-Device Model (C101)
  • APPLICATIONS
    • Bidirectional or Unidirectional Applications Requiring Voltage-Level Translation From Any Voltage (1 V to 5 V) to Any Voltage (1 V to 5 V)
    • Low Voltage Processor I2C Port Translation to 3.3-V and/or 5-V I2C Bus Signal Levels
    • GTL/GTL+ Translation to LVTTL/TTL Signal Levels

The GTL2010 provides ten NMOS pass transistors (Sn and Dn) with a common gate (GREF) and a reference transistor (SREF and DREF). The low ON-state resistance of the switch allows connections to be made with minimal propagation delay. With no direction control pin required, the device allows bidirectional voltage translations any voltage (1 V to 5 V) to any voltage (1 V to 5 V).

When the Sn or Dn port is LOW, the clamp is in the ON state and a low-resistance connection exists between the Sn and Dn ports. Assuming the higher voltage is on the Dn port, when the Dn port is HIGH, the voltage on the Sn port is limited to the voltage set by the reference transistor (SREF). When the Sn port is HIGH, the Dn port is pulled to VCC by the pullup resistors.

All transistors in the GTL2010 have the same electrical characteristics, and there is minimal deviation from one output to another in voltage or propagation delay. This offers superior matching over discrete transistor voltage-translation solutions where the fabrication of the transistors is not symmetrical. With all transistors being identical, the reference transistor (SREF/DREF) can be located on any of the other ten matched Sn/Dn transistors, allowing for easier board layout. The translator transistors with integrated ESD circuitry provides excellent ESD protection.

The GTL2010 provides ten NMOS pass transistors (Sn and Dn) with a common gate (GREF) and a reference transistor (SREF and DREF). The low ON-state resistance of the switch allows connections to be made with minimal propagation delay. With no direction control pin required, the device allows bidirectional voltage translations any voltage (1 V to 5 V) to any voltage (1 V to 5 V).

When the Sn or Dn port is LOW, the clamp is in the ON state and a low-resistance connection exists between the Sn and Dn ports. Assuming the higher voltage is on the Dn port, when the Dn port is HIGH, the voltage on the Sn port is limited to the voltage set by the reference transistor (SREF). When the Sn port is HIGH, the Dn port is pulled to VCC by the pullup resistors.

All transistors in the GTL2010 have the same electrical characteristics, and there is minimal deviation from one output to another in voltage or propagation delay. This offers superior matching over discrete transistor voltage-translation solutions where the fabrication of the transistors is not symmetrical. With all transistors being identical, the reference transistor (SREF/DREF) can be located on any of the other ten matched Sn/Dn transistors, allowing for easier board layout. The translator transistors with integrated ESD circuitry provides excellent ESD protection.

Download

Similar products you might be interested in

open-in-new Compare alternates
Similar functionality to the compared device
LSF0108 ACTIVE Octal bidirectional multi-voltage-level translator High speed and wider temperature range

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 1
Type Title Date
* Data sheet GTL2010 datasheet 16 Feb 2006

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​