SN74AVCH4T245

ACTIVE

4-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation and 3-State Outputs

A newer version of this product is available

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
SN74AXCH4T245 ACTIVE 4-bit dual-supply bus transceiver Pin-to-pin upgrade with a wider voltage range and improved performance

SN74AVCH4T245

ACTIVE

Product details

Technology family AVC Applications JTAG, SPI, UART Bits (#) 4 High input voltage (min) (V) 1.2 High input voltage (max) (V) 3.6 Vout (min) (V) 1.2 Vout (max) (V) 3.6 Data rate (max) (Mbps) 380 IOH (max) (mA) -12 IOL (max) (mA) 12 Supply current (max) (µA) 16 Features Bus-hold, Overvoltage tolerant inputs, Partial power down (Ioff) Input type Standard CMOS Output type 3-State, Balanced CMOS, Push-Pull Rating Catalog Operating temperature range (°C) -40 to 85
Technology family AVC Applications JTAG, SPI, UART Bits (#) 4 High input voltage (min) (V) 1.2 High input voltage (max) (V) 3.6 Vout (min) (V) 1.2 Vout (max) (V) 3.6 Data rate (max) (Mbps) 380 IOH (max) (mA) -12 IOL (max) (mA) 12 Supply current (max) (µA) 16 Features Bus-hold, Overvoltage tolerant inputs, Partial power down (Ioff) Input type Standard CMOS Output type 3-State, Balanced CMOS, Push-Pull Rating Catalog Operating temperature range (°C) -40 to 85
SOIC (D) 16 59.4 mm² 9.9 x 6 TSSOP (PW) 16 32 mm² 5 x 6.4 TVSOP (DGV) 16 23.04 mm² 3.6 x 6.4 UQFN (RSV) 16 4.68 mm² 2.6 x 1.8 VQFN (RGY) 16 14 mm² 4 x 3.5
  • Control Inputs VIH/VIL Levels are Referenced to
    VCCA Voltage
  • Fully Configurable Dual-Rail Design Allows Each
    Port to Operate Over the Full 1.2V to 3.6V Power-
    Supply Range
  • I/Os Are 4.6V Tolerant
  • Ioff Supports Partial Power-Down-Mode Operation
  • Bus Hold on Data Inputs Eliminates the Need for
    External pull-up/pull-down Resistors
  • Max Data Rates
    • 380 Mbps (1.8 V to 3.3 V Translation)
    • 200 Mbps (<1.8 V to 3.3 V Translation)
    • 200 Mbps (Translate to 2.5 V or 1.8 V)
    • 150 Mbps (Translate to 1.5 V)
    • 100 Mbps (Translate to 1.2 V)
  • Latch-Up Performance Exceeds 100 mA Per
    JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 8000 V Human Body Model (A114-A)
    • 200 V Machine Model (A115-A)
    • 1000 V Charged-Device Model (C101)
  • Control Inputs VIH/VIL Levels are Referenced to
    VCCA Voltage
  • Fully Configurable Dual-Rail Design Allows Each
    Port to Operate Over the Full 1.2V to 3.6V Power-
    Supply Range
  • I/Os Are 4.6V Tolerant
  • Ioff Supports Partial Power-Down-Mode Operation
  • Bus Hold on Data Inputs Eliminates the Need for
    External pull-up/pull-down Resistors
  • Max Data Rates
    • 380 Mbps (1.8 V to 3.3 V Translation)
    • 200 Mbps (<1.8 V to 3.3 V Translation)
    • 200 Mbps (Translate to 2.5 V or 1.8 V)
    • 150 Mbps (Translate to 1.5 V)
    • 100 Mbps (Translate to 1.2 V)
  • Latch-Up Performance Exceeds 100 mA Per
    JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 8000 V Human Body Model (A114-A)
    • 200 V Machine Model (A115-A)
    • 1000 V Charged-Device Model (C101)

This 4-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.2 V to 3.6 V. The SN74AVCH4T245 is optimized to operate with VCCA/VCCB set at 1.4 V to 3.6 V. It is operational with VCCA/VCCB as low as 1.2 V. This allows for universal low voltage bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V voltage nodes.

The SN74AVCH4T245 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input and the output-enable (OE) input activate either the B-port outputs or the A-port outputs or place both output ports into the high-impedance mode. The device transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports is always active and must have a logic HIGH or LOW level applied to prevent excess ICC and ICCZ.

The SN74AVCH4T245 device control pins (1DIR, 2DIR, 1OE, and 2OE) are supplied by VCCA.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The VCC isolation feature ensures that if either VCC input is at GND, then both ports are in the high-impedance state. The bus-hold circuitry on the powered-up side always stays active.

Active bus-hold circuitry holds unused or undriven data inputs at a valid logic state. Use of pull-up or pull-down resistors with the bus-hold circuitry is not recommended. The bus-hold circuitry on the powered-up side always stays active.

To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This 4-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.2 V to 3.6 V. The SN74AVCH4T245 is optimized to operate with VCCA/VCCB set at 1.4 V to 3.6 V. It is operational with VCCA/VCCB as low as 1.2 V. This allows for universal low voltage bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V voltage nodes.

The SN74AVCH4T245 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input and the output-enable (OE) input activate either the B-port outputs or the A-port outputs or place both output ports into the high-impedance mode. The device transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports is always active and must have a logic HIGH or LOW level applied to prevent excess ICC and ICCZ.

The SN74AVCH4T245 device control pins (1DIR, 2DIR, 1OE, and 2OE) are supplied by VCCA.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The VCC isolation feature ensures that if either VCC input is at GND, then both ports are in the high-impedance state. The bus-hold circuitry on the powered-up side always stays active.

Active bus-hold circuitry holds unused or undriven data inputs at a valid logic state. Use of pull-up or pull-down resistors with the bus-hold circuitry is not recommended. The bus-hold circuitry on the powered-up side always stays active.

To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 17
Type Title Date
* Data sheet SN74AVCH4T245 4-Bit Dual-Supply Bus Transceiver With Configurable Level-Shifting, Voltage Translation, and 3-State Outputs datasheet (Rev. E) PDF | HTML 25 Nov 2015
Application note Schematic Checklist - A Guide to Designing With Fixed or Direction Control Translators PDF | HTML 02 Oct 2024
Application note Schematic Checklist - A Guide to Designing with Auto-Bidirectional Translators PDF | HTML 12 Jul 2024
Application note Understanding Transient Drive Strength vs. DC Drive Strength in Level-Shifters (Rev. A) PDF | HTML 03 Jul 2024
Selection guide Voltage Translation Buying Guide (Rev. A) 15 Apr 2021
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
Application note Voltage Translation Between 3.3-V, 2.5-V, 1.8-V, and 1.5-V Logic Standards (Rev. B) 30 Apr 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
More literature LCD Module Interface Application Clip 09 May 2003
User guide AVC Advanced Very-Low-Voltage CMOS Logic Data Book, March 2000 (Rev. C) 20 Aug 2002
More literature Standard Linear & Logic for PCs, Servers & Motherboards 13 Jun 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 22 May 2002
Application note Dynamic Output Control (DOC) Circuitry Technology And Applications (Rev. B) 07 Jul 1999
Application note AVC Logic Family Technology and Applications (Rev. A) 26 Aug 1998

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

14-24-LOGIC-EVM — Logic product generic evaluation module for 14-pin to 24-pin D, DB, DGV, DW, DYY, NS and PW packages

The 14-24-LOGIC-EVM evaluation module (EVM) is designed to support any logic device that is in a 14-pin to 24-pin D, DW, DB, NS, PW, DYY or DGV package,

User guide: PDF | HTML
Not available on TI.com
Evaluation board

14-24-NL-LOGIC-EVM — Logic product generic evaluation module for 14-pin to 24-pin non-leaded packages

14-24-NL-LOGIC-EVM is a flexible evaluation module (EVM) designed to support any logic or translation device that has a 14-pin to 24-pin BQA, BQB, RGY, RSV, RJW or RHL package.

User guide: PDF | HTML
Not available on TI.com
Evaluation board

AVCLVCDIRCNTRL-EVM — Generic EVM for Direction-Controlled Bidirectional Translation Device Supporting AVC and LVC

The generic EVM is designed to support one, two, four and eight channel LVC and AVC direction-controlled translation devices. It also supports the bus hold and automotive -Q1 devices in the same number of channels. The AVC are low voltage translation devices with lower drive strength of 12mA. LVC (...)

User guide: PDF
Not available on TI.com
Simulation model

HSPICE MODEL OF SN74AVCH4T245

SCEJ220.ZIP (100 KB) - HSpice Model
Simulation model

SN74AVCH4T245 IBIS Model

SCEM502.ZIP (65 KB) - IBIS Model
Reference designs

TIDA-060039 — Inductive touch and magnetic dial contactless user-interface reference design

This reference design uses inductive and Hall-effect sensing technologies to provide a human-machine interface. The inductive sensing devices create eight different touch buttons on a seamless surface while the Hall-effect sensor is used to create a magnetic dial that can rotate and be used as an (...)
Design guide: PDF
Package Pins CAD symbols, footprints & 3D models
SOIC (D) 16 Ultra Librarian
TSSOP (PW) 16 Ultra Librarian
TVSOP (DGV) 16 Ultra Librarian
UQFN (RSV) 16 Ultra Librarian
VQFN (RGY) 16 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos