TPS60212

ACTIVE

Regulated 3.3V 50mA, low battery detector, low-ripple charge pump with ultra low operating current

A newer version of this product is available

open-in-new Compare alternates
Same functionality with different pin-out to the compared device
MAX660 ACTIVE 10 kHz/80 kHz switched capacitor voltage converter Wider voltage range

Product details

Rating Catalog Operating temperature range (°C) -40 to 85 Type Charge pump Iout (max) (A) 0.05 Vin (min) (V) 1.8 Vin (max) (V) 3.6 Switching frequency (min) (kHz) 200 Switching frequency (max) (kHz) 400 Features Frequency synchronization, Regulated Vout (min) (V) 3.3 Vout (max) (V) 3.3 Iq (typ) (µA) 2
Rating Catalog Operating temperature range (°C) -40 to 85 Type Charge pump Iout (max) (A) 0.05 Vin (min) (V) 1.8 Vin (max) (V) 3.6 Switching frequency (min) (kHz) 200 Switching frequency (max) (kHz) 400 Features Frequency synchronization, Regulated Vout (min) (V) 3.3 Vout (max) (V) 3.3 Iq (typ) (µA) 2
VSSOP (DGS) 10 14.7 mm² 3 x 4.9
  • Regulated 3.3-V Output Voltage From a 1.8-V to 3.6-V Input Voltage Range
  • UltraLow Operating Current in Snooze Mode, Typical 2 uA With up to 2-mA Output Current
  • Less Than 5-mV(PP) Output Voltage Ripple Achieved With Push-Pull Topology
  • Integrated Low-Battery and Power-Good Detector
  • Switching Frequency Can Be Synchronized to External Clock Signal
  • Extends Battery Usage With up to 90% Efficiency and 35-uA Quiescent Current
  • Easy-To-Design, Low Cost, Low EMI Power Supply Since No Inductors Are Used
  • Compact Converter Solution in UltraSmall 10-Pin MSOP With Only Four External Capacitors Required
  • Evaluation Module Available (TPS60210EVM-167)
  • Applications
    • Replaces DC/DC Converters With Inductors in Battery-Powered Applications Like:
      • Two Battery Cells to 3.3-V Conversion
      • MSP430 Ultralow-Power Microcontroller and Other Battery Powered Microprocessor Systems
      • Glucose Meters and Other Medical Instruments
      • MP3 Portable Audio Players
      • Backup-Battery Boost Converters
      • Cordless Phones, PDAs
  • Regulated 3.3-V Output Voltage From a 1.8-V to 3.6-V Input Voltage Range
  • UltraLow Operating Current in Snooze Mode, Typical 2 uA With up to 2-mA Output Current
  • Less Than 5-mV(PP) Output Voltage Ripple Achieved With Push-Pull Topology
  • Integrated Low-Battery and Power-Good Detector
  • Switching Frequency Can Be Synchronized to External Clock Signal
  • Extends Battery Usage With up to 90% Efficiency and 35-uA Quiescent Current
  • Easy-To-Design, Low Cost, Low EMI Power Supply Since No Inductors Are Used
  • Compact Converter Solution in UltraSmall 10-Pin MSOP With Only Four External Capacitors Required
  • Evaluation Module Available (TPS60210EVM-167)
  • Applications
    • Replaces DC/DC Converters With Inductors in Battery-Powered Applications Like:
      • Two Battery Cells to 3.3-V Conversion
      • MSP430 Ultralow-Power Microcontroller and Other Battery Powered Microprocessor Systems
      • Glucose Meters and Other Medical Instruments
      • MP3 Portable Audio Players
      • Backup-Battery Boost Converters
      • Cordless Phones, PDAs

The TPS6021x step-up, regulated charge pumps generate a 3.3-V ±4% output voltage from a 1.8-V to 3.6-V input voltage. These devices are typically powered by two alkaline, NiCd, or NiMH battery cells or by one primary lithium MnO2 (or similar) coin cell and operate down to a minimum supply voltage of 1.6 V. Continuous output current is a minimum of 100 mA for the TPS60210 and TPS60211, and 50 mA for the TPS60212 and TPS60213, all from a 2-V input.

Three operating modes can be programmed using the SNOOZE\ pin. When SNOOZE\ is low, the device is put into snooze mode. In snooze mode, the device operates with a typical quiescent current of 2 uA while the output voltage is maintained at 3.3 V ±6%. This is lower than the self-discharge current of most batteries. Load current in snooze mode is limited to 2 mA. When SNOOZE\ is high, the device is put into normal operating mode. During normal operating mode, the device operates in the newly developed linskip mode where it switches seamlessly from the power saving pulse-skip mode at light loads to the low-noise constant-frequency linear-regulation mode once the output current exceeds the linskip current threshold of about 7 mA. In this mode, the device operates from the internal oscillator. The device is synchronized to an external clock signal if SNOOZE\ is clocked; thus switching harmonics can be controlled and minimized.

Only four external capacitors are needed to build a complete low-ripple dc/dc converter. The push-pull operating mode of two single-ended charge pumps assures the low output voltage ripple as charge is continuously transferred to the output. All the devices can start with full load current. The devices include a low-battery detector that issues a warning if the battery voltage drops below a user-defined threshold voltage or a power-good detector that goes active when the output voltage reaches about 90% of its nominal value. This dc/dc converter requires no inductors; therefore, EMI of the system is reduced to a minimum, making it easier to use in designs. It is available in the small 10-pin MSOP package (DGS).

The TPS6021x step-up, regulated charge pumps generate a 3.3-V ±4% output voltage from a 1.8-V to 3.6-V input voltage. These devices are typically powered by two alkaline, NiCd, or NiMH battery cells or by one primary lithium MnO2 (or similar) coin cell and operate down to a minimum supply voltage of 1.6 V. Continuous output current is a minimum of 100 mA for the TPS60210 and TPS60211, and 50 mA for the TPS60212 and TPS60213, all from a 2-V input.

Three operating modes can be programmed using the SNOOZE\ pin. When SNOOZE\ is low, the device is put into snooze mode. In snooze mode, the device operates with a typical quiescent current of 2 uA while the output voltage is maintained at 3.3 V ±6%. This is lower than the self-discharge current of most batteries. Load current in snooze mode is limited to 2 mA. When SNOOZE\ is high, the device is put into normal operating mode. During normal operating mode, the device operates in the newly developed linskip mode where it switches seamlessly from the power saving pulse-skip mode at light loads to the low-noise constant-frequency linear-regulation mode once the output current exceeds the linskip current threshold of about 7 mA. In this mode, the device operates from the internal oscillator. The device is synchronized to an external clock signal if SNOOZE\ is clocked; thus switching harmonics can be controlled and minimized.

Only four external capacitors are needed to build a complete low-ripple dc/dc converter. The push-pull operating mode of two single-ended charge pumps assures the low output voltage ripple as charge is continuously transferred to the output. All the devices can start with full load current. The devices include a low-battery detector that issues a warning if the battery voltage drops below a user-defined threshold voltage or a power-good detector that goes active when the output voltage reaches about 90% of its nominal value. This dc/dc converter requires no inductors; therefore, EMI of the system is reduced to a minimum, making it easier to use in designs. It is available in the small 10-pin MSOP package (DGS).

Download

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 1
Type Title Date
* Data sheet Regulated 3.3-V, Low-Ripple Charge Pump with Ultra Low Operating Current datasheet 20 Jun 2000

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​