Home Power management Voltage references Shunt voltage references

TL432

ACTIVE

Adjustable precision shunt regulator (reverse pinout)

A newer version of this product is available

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
NEW TLA432 ACTIVE All-capacitor stable precision programmable reference with RKA pin layout For cost optimized designs

Product details

VO (V) 2.495 Initial accuracy (max) (%) 0.5, 1, 2 VO adj (min) (V) 2.495 VO adj (max) (V) 36 Iz for regulation (min) (µA) 400 Reference voltage (V) adjustable Rating Catalog Temp coeff (max) (ppm/°C) 92 Operating temperature range (°C) -40 to 125 Iout/Iz (max) (mA) 100
VO (V) 2.495 Initial accuracy (max) (%) 0.5, 1, 2 VO adj (min) (V) 2.495 VO adj (max) (V) 36 Iz for regulation (min) (µA) 400 Reference voltage (V) adjustable Rating Catalog Temp coeff (max) (ppm/°C) 92 Operating temperature range (°C) -40 to 125 Iout/Iz (max) (mA) 100
SOT-23 (DBV) 5 8.12 mm² 2.9 x 2.8 SOT-23 (DBZ) 3 6.9204 mm² 2.92 x 2.37 SOT-89 (PK) 3 18.4275 mm² 4.5 x 4.095
  • Reference voltage tolerance at 25°C
    • 0.5% (B grade)
    • 1% (A grade)
    • 2% (Standard grade)
  • Adjustable output voltage: Vref to 36V
  • Operation from −40°C to 125°C
  • Typical temperature drift (TL43xB)
    • 6mV (C temp)
    • 14mV (I temp, Q temp)
  • Low Output Noise
  • 0.2Ω Typical output impedance
  • Sink-current capability: 1mA to 100mA
  • Reference voltage tolerance at 25°C
    • 0.5% (B grade)
    • 1% (A grade)
    • 2% (Standard grade)
  • Adjustable output voltage: Vref to 36V
  • Operation from −40°C to 125°C
  • Typical temperature drift (TL43xB)
    • 6mV (C temp)
    • 14mV (I temp, Q temp)
  • Low Output Noise
  • 0.2Ω Typical output impedance
  • Sink-current capability: 1mA to 100mA

The TL431 and TL432 devices are three-terminal adjustable shunt regulators, with specified thermal stability over applicable automotive, commercial, and military temperature ranges. The output voltage can be set to any value between Vref (approximately 2.5V) and 36V, with two external resistors. These devices have a typical output impedance of 0.2Ω. Active output circuitry provides a very sharp turn-on characteristic, making these devices excellent replacements for Zener diodes in many applications, such as on-board regulation, adjustable power supplies, and switching power supplies. The TL432 device has exactly the same functionality and electrical specifications as the TL431 device, but has different pinouts for the DBV, DBZ, and PK packages.

Both the TL431 and TL432 devices are offered in three grades, with initial tolerances (at 25°C) of 0.5%, 1%, and 2%, for the B, A, and standard grade, respectively. In addition, low output drift versus temperature verifies good stability over the entire temperature range.

The TL43xxC devices are characterized for operation from 0°C to 70°C, the TL43xxI devices are characterized for operation from –40°C to 85°C, and the TL43xxQ devices are characterized for operation from –40°C to 125°C.

The TL431 and TL432 devices are three-terminal adjustable shunt regulators, with specified thermal stability over applicable automotive, commercial, and military temperature ranges. The output voltage can be set to any value between Vref (approximately 2.5V) and 36V, with two external resistors. These devices have a typical output impedance of 0.2Ω. Active output circuitry provides a very sharp turn-on characteristic, making these devices excellent replacements for Zener diodes in many applications, such as on-board regulation, adjustable power supplies, and switching power supplies. The TL432 device has exactly the same functionality and electrical specifications as the TL431 device, but has different pinouts for the DBV, DBZ, and PK packages.

Both the TL431 and TL432 devices are offered in three grades, with initial tolerances (at 25°C) of 0.5%, 1%, and 2%, for the B, A, and standard grade, respectively. In addition, low output drift versus temperature verifies good stability over the entire temperature range.

The TL43xxC devices are characterized for operation from 0°C to 70°C, the TL43xxI devices are characterized for operation from –40°C to 85°C, and the TL43xxQ devices are characterized for operation from –40°C to 125°C.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 10
Type Title Date
* Data sheet TL431, TL432 Precision Programmable Reference datasheet (Rev. S) PDF | HTML 31 May 2024
E-book Tips and tricks for designing with voltage references (Rev. A) 07 May 2021
Application note Using the TL431 for Undervoltage and Overvoltage Detection (Rev. A) 11 Dec 2019
Selection guide 431 Device Nomenclature (Rev. B) 18 Sep 2019
Application note Designing With the Improved TL431LI (Rev. A) 28 Jun 2019
E-book Voltage Supervisor and Reset ICs: Tips, Tricks and Basics 28 Jun 2019
Technical article Designing for isolated DC/DC converter shunt safety PDF | HTML 29 Aug 2015
Application note Understanding stability boundary conditions charts in TL431, TL432 Data sheet (Rev. A) 16 Jan 2014
Application note Setting the shunt voltage on an adjustable shunt regulator 01 Sep 2011
More literature SLL Precision Reference Product Clip 23 Feb 2006

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation model

SPICE Model of TL431

SLOJ174.ZIP (0 KB) - Spice Model
Simulation model

TL431 Family Unencrypted PSpice Transient and AC Model (Rev. B)

SLVM071B.ZIP (130 KB) - PSpice Model
Simulation model

TL431x, TL432x TINA-TI AC Reference Design

SLVM165.TSC (65 KB) - TINA-TI Reference Design
Simulation model

TL431x, TL432x TINA-TI Transient & AC Spice Model

SLVM163.ZIP (4 KB) - TINA-TI Spice Model
Simulation model

TL431x, TL432x TINA-TI Transient Reference Design

SLVM164.TSC (82 KB) - TINA-TI Reference Design
Calculation tool

SHUNT-REFERENCE-CALC Shunt Reference Selector and Design Calculator

This tool guides the user through the design process for the TLx431 and LM40x0 family of shunt voltage references. This calculator will recommend resistance and capacitance values to optimally meet the user's desired specifications.
Supported products & hardware

Supported products & hardware

Products
Shunt voltage references
ATL431 2.5-V low-IQ adjustable precision shunt regulator ATL431LI Low-IQ programmable shunt regulator offered in an ultra-small DQN package ATL431LI-Q1 Automotive, high-bandwidth, low-IQ programmable shunt regulator (pinout: KRA) ATL432 2.5-V precision programmable shunt regulator ATL432LI High-bandwidth, low-IQ programmable shunt regulator (pinout: RKA) ATL432LI-Q1 Automotive, high-bandwidth, low-IQ programmable shunt regulator (pinout: RKA) LM4030 Ultra-high-precision shunt voltage reference LM4040 Fixed voltage, 45-µA, precision micropower shunt voltage reference LM4040-N 100-ppm/°C precision micropower shunt voltage reference LM4040-N-Q1 Automotive, 100-ppm/°C precision micropower shunt voltage reference LM4040C25-EP Enhanced Product 2.5-V Precision Micropower Shunt Voltage Reference, 0.5% accuracy LM4041-N Fixed & adjustable, 45-µA, precision micropower shunt voltage reference LM4041-N-Q1 Automotive, precision micropower shunt voltage reference LM4041A12 1.2-V precision micropower shunt voltage reference with 0.1% accuracy LM4041B Adjustable, precision micropower shunt voltage reference with 0.2% accuracy LM4041B12 1.2-V precision micropower shunt voltage reference with 0.2% accuracy LM4041C Adjustable, precision micropower shunt voltage reference with 0.5% accuracy LM4041C12 1.2-V precision micropower shunt voltage reference with 0.5% accuracy LM4041D Adjustable, precision micropower shunt voltage reference with 1% accuracy LM4041D12 1.2-V precision micropower shunt voltage reference with 1% accuracy LM4050-N 50-ppm/°C precision micropower shunt voltage reference LM4050-N-Q1 Automotive, 50-ppm/°C precision micropower shunt voltage reference LM4050QML-SP Radiation-hardened QMLV, 2.5-V or 5-V shunt voltage reference LM4051-N Fixed & adjustable, precision micropower shunt voltage reference LMV431 1.5%, low-voltage (1.24-V) adjustable precision shunt regulator LMV431A 1%, low-voltage (1.24-V) adjustable precision shunt regulator LMV431B 0.5%, low-voltage (1.24-V) adjustable precision shunt regulator TL431 Adjustable precision shunt regulator TL431-Q1 Automotive adjustable precision shunt regulator (pin layout: KRA) TL431C 2% adjustable precision shunt regulator TL431LI Adjustable precision shunt regulator with optimized reference current (pin layout: KRA) TL431LI-Q1 Automotive, adjustable, precision shunt regulator with optimized reference current TL432 Adjustable precision shunt regulator (reverse pinout) TL432-Q1 Automotive adjustable precision shunt regulator (pin layout: RKA) TL432LI Adjustable precision shunt regulator with optimized reference current (pin layout: RKA) TL432LI-Q1 Automotive, adjustable, precision shunt regulator with optimized reference current TLA431 All-capacitor stable precision programmable reference with KRA pin layout TLA432 All-capacitor stable precision programmable reference with RKA pin layout TLV431 1.5% accuracy, low-voltage, adjustable precision shunt regulator TLV431A 1% accuracy, low-voltage, adjustable precision shunt regulator TLV431A-Q1 Automotive, low-voltage adjustable precision shunt regulator TLV431B 0.5% accuracy, low-voltage, adjustable precision shunt regulator TLV431B-Q1 Automotive, low-voltage adjustable precision shunt regulator TLVH431 1.5% low-voltage wide-operating current adjustable precision shunt regulator TLVH431A 1% low-voltage wide-operating current adjustable precision shunt regulator TLVH431A-Q1 Automotive, low-voltage adjustable precision shunt regulator TLVH431B 0.5% low-voltage wide-operating current adjustable precision shunt regulator TLVH431B-EP Enhanced-plastic 0.5% low-voltage wide-operating-current adjustable precision shunt regulator TLVH431B-Q1 Automotive, low-voltage adjustable precision shunt regulator (reverse pinout) TLVH432 1.5% low-voltage wide-operating current adjustable precision shunt regulator (reverse pinout) TLVH432A 1% low-voltage wide-operating current adjustable precision shunt regulator (reverse pinout) TLVH432B 0.5% low-voltage wide-operating current adjustable precision shunt regulator (reverse pinout)
General-purpose op amps
TLV4313 Quad, 5.5-V, 1-MHz, low quiescent current (65-μA), RRIO operational amplifier TLV4314 Quad, 5.5-V, 3-MHz, RRIO operational amplifier TLV4314-Q1 Automotive-grade, quad, 5.5-V, 3-MHz, RRIO operational amplifier TLV4316 Quad, 5.5-V, 10-MHz, RRIO operational amplifier TLV4316-Q1 Automotive-grade, quad, 5.5-V, 10-MHz, RRIO operational amplifier TLV4379 Quad, 5.5-V, 90-kHz, low quiescent current (4-μA), RRIO operational amplifier
Precision op amps (Vos<1mV)
TLV4333 Quad, 350-kHz, low-noise, RRIO, CMOS operational amplifier for cost-sensitive systems TLV4376 Quad 5.5-MHz, 100-µV offset, 8-nV/√Hz noise, 815-µA power, precision operational amplifiers TLV4387 Quad, ultra-high-precision (10 μV) zero-drift (0.01 μV/°C) low-input-bias-current op amp
Calculation tool

TL431CALC TL431 Design Calculator

The TL431CALC spreadsheet calculates all component parameters for any desired output voltage for the TL43x, TLV43x and TL1431. The spreadsheet includes limits for each device. Resistor values are calculated to the nearest 1% value.

Supported products & hardware

Supported products & hardware

Products
Shunt voltage references
TL1431 Precision adjustable (programmable) shunt reference TL431 Adjustable precision shunt regulator TL432 Adjustable precision shunt regulator (reverse pinout) TLV431 1.5% accuracy, low-voltage, adjustable precision shunt regulator
Software
Calculation tool
TL431CALC TL431 component calculator
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Reference designs

PMP23463 — 300W thin profile LLC reference design

This reference design demonstrates a half-bridge resonant converter on a single copper layer printed circuit board (PCB) that accepts a 385V input and generates an isolated 22.5V output up to 13.5A load. This design is comprised of the UCC256603 half-bridge LLC controller and UCC24612 synchronous (...)
Test report: PDF
Reference designs

PMP21697 — Variable voltage power converter 5-35-V 300-W peak reference design for automotive audio amplifiers

This reference design provides a variable output power for audio amplifiers from 5 V to 35 V controllable by a Pulse Width Modulator signal. The output power capability of 75 W RMS and 300 W peak is suitable for high power automotive audio amplifiers. Conversion is 4-switch Buck-Boost for greater (...)
Test report: PDF
Schematic: PDF
Reference designs

PMP10737 — Reverse Polarity and Overvoltage Protection Reference Design for Automotive Systems

The PMP10737 is a reference design that provides protection from reverse polarity and overvoltage using discrete components. The Input voltage range is between 7V to 35V with OVP at 25V. The LM74610 is used for battery reverse protection, which utilizes a charge pump to drive an N-channel FET to (...)
Test report: PDF
Schematic: PDF
Package Pins CAD symbols, footprints & 3D models
SOT-23 (DBV) 5 Ultra Librarian
SOT-23 (DBZ) 3 Ultra Librarian
SOT-89 (PK) 3 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos